Serially-Connected Monolayer MoS₂ FETs with Channel Patterned by a 7.5 nm Resolution Directed Self-Assembly Lithography

A.Nourbakhsh, A. Zubair, A. Tavakkoli, R. Sajjad, X. Ling, M. Dresselhaus, J. Kong, K. K. Berggren, D. Antoniadis and T. Palacios Massachusetts Institute of Technology, Cambridge MA 02139, USA, Email: anour@mit.edu

Abstract: We demonstrate sub-10 nm transistor channel lengths by directed self-assembly patterning of monolayer MoS₂ in a periodic chain of homojunction semiconducting-(2H) and metallic-phase (1T') MoS₂ regions with half-pitch of 7.5 nm. The MoS₂ composite transistor possesses an off-state current of 100 pA/µm and an I_{on}/I_{off} ratio in excess of 10⁵. Modeling of the resulting current-voltage characteristics reveals that the 2H/1T' MoS₂ homojunction has a resistance of 75 Ω .µm while the 2H-MoS₂ exhibits low-field mobility of ~8 cm²/V.s and carrier injection velocity of ~10⁶ cm/s.

Introduction: 2D crystals of layered transition metal dichalcogenides (2D-TMDCs) such as MoS₂ are ideal candidates for aggressive miniaturization of field-effect transistors (FETs) to the single digit nanometer scale. In addition to large bandgap, chemical stability and compatibility with CMOS processes [1, 2], this class of materials can benefit from their atomically thin body with dangling-bond-free surfaces. Because of this and their ultra-small body thickness which leads to very small electrostatic characteristic scaling length, $\lambda = \sqrt{(\varepsilon_s.t_s.t_{ox}/\varepsilon_{ox})}$, transistor subthreshold swing (SS) and drain-induced barrier lowering (DIBL) coefficient in such films can be significantly smaller than for conventional thinbody semiconductors. In particular, monolayer-MoS₂ (ML-MoS₂), because of its bandgap of 1.8 eV yields high I_{on}/I_{off} ratio MOSFETs, while its low dielectric constant, $\varepsilon_s = 4-7$, and atomically thin body, $t_s \approx 0.7$ nm, facilitate the reduction of λ . In our previous work [3], we reported a 15-nm channel length MoS₂ FET using monolayer graphene as the Source/Drain (S/D) contacts. In this work, by exploiting the semiconducting to metallic phase transition in MoS_2 [4], we demonstrate a sub-10-nm transistor channel length by patterning of MoS_2 in a periodic chain of homojunction semiconducting- (2H) and metallic-phase (1T') MoS_2 regions. The 2H- to 1T'-phase transition occurs by exposing 2H-MoS₂ to *n*-butyl lithium solution as confirmed by electrical and photoluminescence measurements (Fig.1). Sub-10 nm 1T'/2H MoS₂ patterning is achieved by directed self-assembly (DSA) of block copolymers (BCP) technique which is one of the most promising emerging technologies for cost-effective, nanoscale, and high-volume manufacturing [5].

Device Fabrication: The key steps for fabricating BCP patterned MoS₂ FETs, as well as a schematic of the devices are shown in Figs. 2 and 3, respectively. ML-MoS₂, grown by chemical vapor deposition (CVD), was transferred onto a [p⁺ Si/native SiO₂] substrate coated with 10 nm of HfO₂ (EOT \approx 4 nm) serving as the back gate (BG). Subsequently, by means of electron beam lithography and Au metallization, end-contacts to the MoS₂ film and measurement pads were formed. Next the surface of the substrate is functionalized with hydroxyl terminated polystyrene (OH-PS), poly(styrene-bdimethylsiloxane) (PS-b-PDMS) BCP solution is spun-on followed by a solvent vapor annealing step to promote microphase separation, and finally selective reactive ion etching (RIE) of PS matrix is done in a controlled O₂ plasma leaving behind oxidized-PDMS (ox-PDMS) lines parallel to the Au lines. Fig.4a shows the final ox-PDMS lines with half-

pitch of 7.5 nm formed between Au lines contacting the MoS_2 film. Next, the phase transition treatment of the ox-PDMSpatterned MoS₂ is applied to selectively convert the uncovered underlying 2H-MoS₂ to 1T'-MoS₂, while the ox-PDMScovered regions remain semiconducting. These alternating 2H-MoS₂/1T'-MoS₂ areas correspond to semiconducting and metallic regions with same length, and form a chain of transistors in series as shown in Fig. 4b. The resulting transistor pitch is equal to the BCP period, 15 nm, with channel length of 7.5 nm. The minimum number of transistors-in-series thus formed between a pair of 120-nm-spaced Au electrodes was 8. **Results and discussion:** Fig. 5a shows the I_d - V_g evolution at three fabrication stages of an eventual chain of eight ML-MoS₂ FETs with 15 nm pitch. As can be seen, the ML-MoS₂ survives the PS etching step and still shows high I_{on}/I_{off} modulation. However, current degradation of more than two orders of magnitude is observed as well as higher SS and shifted threshold voltage (V_t) compared with the as-fabricated MoS₂-FET. These changes are the consequences of the MoS₂ surface being affected by the plasma radicals. The unwanted degradation is nevertheless direct indication that the PS film is fully etched and the gaps between PDMS lines are fully opened. The last $I_{\rm d}$ - $V_{\rm g}$ curve in Fig. 5a shows the same device characteristics after phase-transition treatment. Fig 5b shows the final device at different V_d values highlighting the significant increase of I_{off} at $V_d=1$ V, which can be attributed to direct source-drain tunneling in the individual FETs. Fig. 6a shows the model fit to the data using the MIT Virtual Source model [6]. The transfer curve below threshold is determined by the MoS_2 threshold voltage (~ -1V), gate capacitance (for 4 nm EOT) and carrier velocity (8x10⁵ cm/s). Near and above threshold $(V_g > 0)$ V), the contact resistance (~ 20 $k\Omega.\mu m$) dominates over the channel resistance until the Schottky contact resistance between the Au metal and MoS₂ is sufficiently low (~1 k Ω .µm for $V_g>2$ V). In this regime $(V_{g}>2V)$, the channel resistance dominates again and the transport is determined by carrier mobility ($\mu \approx 8 \text{ cm}^2/\text{V.s}$) and series resistance between 1T'/2H MoS2 homojunction (~ 75 Ω ,µm). Fig. 6b shows the predicted transfer characteristics of an idealized single 7.5 nm MoS₂ transistor assuming MoS₂metal contact resistance of 100 Ω .µm, and double gate with appropriate work-function and EOT of 0.5 nm leading to a drastically improved SS (62 mV/dec), low DIBL (~20 mV/V) and higher ON current. The carrier velocity and mobility found here from the modeling of the experimental devices are comparable to previously estimated values [7-9]. With the current CVD growth technique, the I_{on} is 0.1 mA/µm for $I_{\text{off}} \approx 10 \text{ pA/}\mu\text{m}$ at $V_{\text{d}} = 0.5 \text{ V}$ (Fig. 6b). Further improvement of carrier velocity is possible with improved film-growth method to meet ITRS requirements for future nodes. Conclusions: We have demonstrated the operation of MoS₂ FETs with the shortest and thinnest S/D channel, namely ~7.5 nm long and ~0.7 nm thick, reported to date. The transistor chain shows $I_{\rm on}/I_{\rm off} \approx 10^6$ with $I_{\rm off}$ ≈ 100 pA/µm. Further improvement of I_{on} current is possible by improved growth of MoS₂ and thus increased carrier velocity and mobility to meet the current requirement for high performance.

Acknowledgments: Partial support by the ONR PECASE program and the NSF NEEDS program.

References:

- [1]B. Radisavljevic, et al., Nat. Nano. Vol. 6, no. 3, p 147, 2011
- [2]W. Cao et al., IEDM 2014.
- [3] A. Nourbakhsh et al., VLSI 2015.
- [4] R. Kappera et al., Nat. Mat. Vol. 13, p 1128, 2014
- [5] S. Jeong et al. Mater Today 16, 468-476, 2013.
- [6] A. Khakifirooz et al., IEEE T Electron Dev. 56, 1674, 2009.
- [7] W.Cao et al., IEEE T Electron Dev. 2014.
- [8] M. Luisier *et al.*, IEDM 2014.
- [9] G. Fiori *et al.*, APL 2013

MoS, FET fabrication

(a) \bigcirc 90 nm SiO, $/p^{++}$ Si wafer

- (b) \bigodot (i) SiO₂ wet etch by BOE, (ii) ALD HfO₂, (iii) forming gas anneal
- (c) \bigtriangledown Transfer MoS₂ films from growth substrates onto target substrates

(d) \bigodot Au end-contacts and measurement pad metallization

DSA-BCP patterning and phase transition treatment

- (e) \bigcirc Apply hydroxyl terminated PS to the substrate
- (f) **O** Spin coat PS-*b*-PDMS BCPs blend on the substrate
- (g) \mathbf{Q} Solvent vapor anneal using toluene and acetone vapor
- (h) \bigcirc CF₄ RIE etch to remove the top PDMS wetting layer
- (i) O_2 RIE etch to remove PS matrix
- (j) \bigcirc Immerse PDMS-patterned MoS₂ FET in 2% *n*-butyl lithium
- (k) \mathbf{O} *n*-butyl lithium removal by solvent rinse

Fig. 2. Fabrication process flow of the short channel $1T'/2H MoS_2$ FETs patterned by DSA-BCP technique. Step (b) includes ALD-HfO₂ at 200 °C, followed by annealing in a forming gas at 400 °C.

Fig.4. (a) SEM images show ox-PDMS lines with 15 nm pitch after PS etch on surfaces with no guide pattern as well as surfaces with Au lines as directional guides. The absence of pattern leads to random formations of the ox-PDMS lines while in patterned surface lines are self-assembled in parallel with the Au electrodes. (b) Schematic short channel FET comprised of a 2H-MoS₂ channel contacted to two adjacent metallic 1T'-MoS₂ regions forming S/D contacts.

Fig. 1. (a) I_d - V_g of a long-channel MoS₂ FET before and after phase transition treatment. The intrinsic 2H-MoS₂ FET shows strong semiconducting behavior with large gate modulation, while after the phase transition, it shows constant (compliance) current due to metallic 1T'-MoS₂. (b) PL spectra of monolayer 2H- and 1T'-MoS₂: The 2H phase shows a strong PL peak at 1.85 eV, while the PL of the 1T'-phase is absolutely quenched owing to its gapless metallic characteristics.

Fig. 3. Schematics depicting the different steps of the DSA of BCP on MoS_2 FETs

Fig. 5. (a) Evolutions of I_d-V_g at V_d = 0.5 V of a CVD monolayer MoS₂-FET: As-fabricated (black), after PS etch (red) and final (blue) after phase transition treatment with *n*-butyl lithium. (b) I_d -V_g of the final device (8x MoS₂ FETs, L_{ch} =7.5nm) at different V_d values.

Fig. 6. (a) MVS fit of the experimental data for the 8 transistor array, high end-contact resistance dominates transport above threshold and limits the I_{on} below 100 μ A/ μ m. (b) Performance prediction of a single transistor with a double-gate structure, EOT of 0.5 nm, and with the same device parameters but assuming excellent contact resistance (100 $\Omega.\mu$ m). Threshold voltage is adjusted to +0.5V for this plot.